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DUAL-RATE FINITE-SETTLING-TIME DISCRETE SYSTEMS 

by 
J. A. Gatlin 

Goddard Space Flight Center 

INTRODUCTION 

Finite-settling-time  (FST)  response  for a single  output/single  input  linear  feedback  control 
system  can be  obtained  using  the  dual-rate,  sampled-data  algorithm 

u k  = control  level, k T  5 t < (k + 1 ) T, 

d i  (k) = output error  sampled  at  t = (k f i i n )  T, 

bo (k), b i  (k) = controller  coefficients, i = 1, 2, . , n; k = 0, 1, 2 ,  . .. 

The  performance  thereby obtained is superior to that  obtained  using  the FST control law for  dis- 
crete  systems  discussed by Kalman  and Bertram  (Reference 1) and  Lindorff (Reference 2). Their 
procedure is based upon the  availability of all the  state  variables  and a plant  with a rational  trans- 
fer function,  and  the  design  obtained  suffers  from high noise  sensitivity and restricted  dynamic 
range  due  to  plant  saturation. 

The  control  law  serially  accumulates n weighted,  plant  output error  samples,  B i  (k) , 
i = 1, . , n, during  each T second  interval.  Each  sample is separated by T/n seconds,  with  the 
first sample  taken at t = kT f (T/n) . At the end of the k th  interval,  that is, a t  t = (k f 1 )T, the con- 
struction of a new control  level is completed.  Then,  retaining  only  the  value of the  previous con- 
trol  level, bo (k) uk, the control law construction  cycle  repeats. 

The synthesis method  involves  selecting  the  coefficients b i  (k), i = 1, . - - , n , such  that  the 
system is brought  to a stable  null  equilibrium  in m + 1 control  level  updates,  where rn is the  order 
of the  plant.  Also,  the  synthesis  method  minimizes 

F = z ( b i ) 2  
i= 1 

in order  to  minimize input noise  transmission. 
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FORMULATION OF THE  PROBLEM 

The  differential  equation  describing the plant  response  for  the  system shown in Figure 1 can 
be  written as 

(-DIGITAL  CONTROLLER---\ (LINEAR PLANT\ i ( t )  = Gx( t )  + gu(t) I 

u ( t )  = Uk I k T I  t < ( k + l ) T ,  

Figure 1-A dual-rate sampled data system. 
x(0) x. ; (3 ) 

where G is a rn X rn matrix, X( t )  is the  plant rn-state vector, x. defines  the  plant  initial  state,  and g is 
the  driving  vector which for this  single input u( t ) has all elements  zero  except  the last which is the 
control gain  constant K .  Equation 3 has  the  solution 

where @( t ) = e G t  is the  plant  transition  matrix.  Letting xk ( X )  = x( t)! t=kT+xT//n , Equation 3 yields 
the  state  vector  at  the  error  sample  times  during  the k t h  interval as 

Selecting  the  first  element of X( t ) as the  plant output variable B yields  the output samples 

where i6: is the first row of the  matrix a, and 

In what  follows, @ ( t T / n )  wi l l  be written as @(f,). G: ( tT/n)   h (XT/n)  , a scalar depending  only on 4 ,  
will  be  represented by a ( 4 ) .  For 4 = 1, 2, . . . , n :  Equation 6 produces 
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Defining 

y k  = V X ,  ( 0 )  -t a u k  

Likewise  Equation 1 can  be  expressed  in  vector  notation as 

where bT = [bl  (k) * . .  bn (k)] . Combining  Equations 10 and 11 yields 

- u k + l  = b T V x ,  ( 0 )  + (bo + b T a ) u k  . (12) 

In Equation 12 the output samples, B i  (k), have  been  replaced by a function of the  state of the 
plant at the  beginning of the k t h  control  interval, xk ( 0 )  , and  control  level, u, , applied  during  the 
interval.  Let C ,  an m-vector, be defined as 

C T  = b T V  , 

c = V ' b ,  

so that Equation 12 also  has  the  form 

where c o  = bo -t bT a. 

The  control  vector cT, c0 can  be  synthesized  from  the  weighting  vector bo, bT as follows. For 
n = r n  

b = [VT]-l c , 

bo = c,, - b'a , (15) 
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and for n 2 m t 1, bo can  be left as a free parameter so that 

Thus  for n = m + 1, 

and for n > m + 1, the solution of Equation 16 that  also  minimizes 

is 

For either Equation  17 or 18, bo may be either arbitrarily selected, or  selected  so  that F is also 
minimized  with  respect  to bo .  

Minimization of the  noise  content  factor, F, results  in  minimum  noise  transmission  through  the 
controller  since  for white  noise  input, 

where zl: is the  variance of the  control  level  sequence and D: is the  variance of the  output  sample 
sequence. 

In this section  the  equivalence  between  Equations 1 and  14  has  been  developed. In the following 
section  the unique values of cT,  co required  for FST response  will  be  determined.  The  values of 
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bo, bT used in Equation 1 are not  unique  but  depend on the  number  and  the  format of the  error 
samples.  Equations  15,  17,  18,  and  19  can  be  used  to  determine  the  values of bo, bT required to 
construct  any  given (m + 1) control vector cT, c o .  

DETERMINATION OF THE FST CONTROL  VECTOR 

The  change in the state of the  plant during the k th interval is given by Equation  5  with 4 = n : 

Equations  14  and  21  can be combined  to  yield 

where 

The  matrix A is the  controller  plus  plant,  closed-loop,  state  transition  matrix. To obtain FST re -  
sponse  in (m + 1) steps  for any se t  of initial  conditions,  the  parameters cT, c0 must be  chosen so  
that 

Direct  solution of Equation 24 is quite  tedious,  but  from  the  Caley-Hamilton  theorem,  Equa- 
tion 24 is satisfied i f  A, a (m + 1) X (m + l) matrix, has all its eigenvalues  equal  to  zero.  The  canon- 
ical  form of such a matrix has zeros  everywhere  except  the  diagonal  above  the  main  diagonal  which 
contains  unity  elements.  Equation 24 is satisfied for  

if 



There are (m + 1) equations  involved  in  Equation 26 and (m -f- 1)  controller  parameters cT, co .  In 
general,  expansion of Equation 25 about  the last  row of i ZI - A /  followed by the  conditions of Equa- 
tion 26 yields 

Qc = q ,  

c o  = T r a c e  @(n)  

The  matrix Q and  the  vector 4 are  systematically  obtained  from A as illustrated below for  a 
third-order  matrix: 

Expanding  about  the last  row yields 

r n. 1 

A SECOND-ORDER SYSTEM  WITH REAL ROOTS 

Consider  the  system of Figure 1 with rn = 2, a l  = 0, and 
a 2  = a. Given the  parameters K, a, T, and n 2 2, the  controller 
parameters b o ,  bT are  to  be chosen to yield FST transient re- 
sponse and a minimum  noise  content  factor,F.  The  fictitious 
controller  parameters c T ,  c,, , illustrated  in  Figure 2, a r e  state  variable  feedback. 

Figure 2-A FST system  with  direct 
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obtained first. Letting b = e-aT results  in 

. ,  

so 

As defined in Equation 23, the  matrix A is 

A =  
aT 

using Equation 30 yields 

with c,, = 1 + b.  It is sometimes  useful to s e t  c 1  = 1; that is, to use unity static  position  feedback. 
This allows  the FST loop gain  to  be  expressed as  

and reduces  the  expression  for c 2  to 

- 1 - b - a T b 3  . 
c2 - ( 1 - b ) a  (35) 
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For n = 2, Equation 15 yields  the  weighting  parameters bo, bl, b, from  the  calculated ficti- 
tious controller  parameters c0 , cl, c 2 .  Using 

and 

consider  the  case for aT-. 0. Since e - ”  = 1 - x + x2/2!  - x3/3! + , the  general  expressions  reduce 
to 

with co = 2. Equation 15 now is 

bo = 2 - [-3 41 [:;I] = 318 . (3 9) 

For n = 2 the  noise  content  factor is 

Now consider  the  use of n = 3 .  The  fictitious  controller  parameters, for KT2 = 1, a r e  

L + l  

2 - bo 
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and as defined in Equation 16, 

L / 1 8  4/18 9/18] 

Equation 17 yields 

b, = ~ - 9 b ~  , 
9 

b, = - 9 + 18b,  , 

b, = - -  
31 
4 9bO . 

Calculating  the  noise  content  factor  and dF(bo  )/bo = 0 produces 

resultingin (bo )OPT = 0.5185, F,,, = 15.5, and 

(43 ) 

A unique feature of the  general  control law expressed by Equation 1 is the  incorporation of 
memory of the  previous  control  level. If bo = 0 is used, FST response is obtained at  the  expense 
of F = 146. The low noise  transmission  feature of the  disclosed  FST  control  law i s  one of its  most 
attractive  features. 

For n > m + 1 the  matrix H is (m + 1) x n .  Equation 18 yields,  for n = 4, 

bo,, 
- -  

4 
-15 + 32 bo 

with (bo), , ,  = 0.5938 and F,,, = 11.5. 
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For n > m + 1 it is sometimes  impractical to use n distinct coefficients. Using only four,  Equa- 
tion l takes the  form 

n '4 n /2  3 n/4 

- " k t 1  = b o u k  + b, B i  ( k )  + b2 B i  ( k )  + b3 B i  ( k )  + b, 2 Bi (k) . (4 7) 
i =  1 i'n/4+1 i=n/2+l i = 3 n / 4 + 1  

With the error  samples  thus grouped  in 4 sets of n/4 samples,  the  matrix H is 

H =  

- 
n 
4 
- n 

4 
n + 4  3n + 4  5n t- 4 

- n 
4 
- - 

4 
n 

3 2 T  3 2  T 32  32  
7n + 4 

n2 t 6n t 8 7n2 t 18n t 8 19n2 + 30n + 8 37n2 t- 42n + E 
- 384n 38 4n 38 4n 384n 

and for large n, H becomes 

H = (%) 

resulting  in 

r l  1 

k'?6 7.'96 

3T/8 

1 

5T/8 

19.!96 

- 
-2.150 

"0.550 

1.050 

2.650 

- 

- - 

7:/8]  9 

37/96 
(49) 

with (bo),,, = 0.8333 and F M I N  = (13.05) (4/n). 

As  n - &Equations 47 and 49 become 

- u k + l  bo uk b, O(k, t )  d t  t- b, Q(k. t ) d t  + b4 I' O(k. t )  d t  ; (51) 
3 T."4 

H = ( f )  
1 1 

3T/8 5T/8 

E 6  7,/96 19/96 
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with (T/4) bo,, = (n/4) bo,,. The  calculation of FMIN, however,  must now include  the  description of 
the  noise  source  power  spectrum. As an  example,  consider a band-limited  noise  generator  with 
uniform  power  density, 

P, = uo'/fo , - f ,  < f < f , ,  

passed  through a linear,  low-pass filter with  the  Laplace  transfer  function 

The  resulting  noise  source is described by the  variance 

(53 1 

and  the  auto-correlation  function, 

For  samples  taken  every T/n < l / h  seconds, it is no longer  appropriate to assume  statistical  inde- 
pendence of the  samples;  however, if the  noise  source is integrated  for T/4 > l / A  seconds,  samples 
taken  every T/4 seconds  can  be  assumed  independent  with 

which  yields 

F = [($ b,)' + ($ b,)' +($ b,)' + ($ b l ) ' ] / ( - y ) ( ~ )  4 A  T ' * 

Therefore, as for  Equation 50, F,,, = (13.05) (4/AT). 

(59) 
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The  preceding  cases show how F is reduced  for n > m; Table 1* is given in  summary. 

Table 1 

Effect of Sample Averaging. 

r 

n 

2 

3 

4 

32 

128 

512 

m 

DESIGN EXAMPLES 

(bo) OPT 

0.3750 

0.5185 

0.5938 

0.8022 

0.8255 

0.8314 

0.8333 

G 
5.000 

3.937 

3.391 

1.267 

0.637 

0.319 

0.1GO 

A T/n 

1024 

683 

512 

64 

16 

4 

0 

Consider  the  system of Figure 1 with m = 2, a l  = 0 ,  a 2  = 0. The  resulting K/s2 plant  model 
is used as the  basic  model  for  many  spacecraft  single-axis  attitude  control  designs. Using  the pro- 
cedure  given  in  the  preceding  sections,  the  matrix A is 

L-1 - 2 . 5  i - b o  - ( 2 - b 0 ) K T 2  -J 
with  the cT, c o  parameters  chosen to  yield  FST  response  for KT2 = 1. A root  locus  plot of A ( K T ~  ), 
given in  Figure 3 ,  illustrates  the  relative  stability of this FST  design. Note that  for K T ~  = 0 there 
is a z-domain pole  at z = - bo ;  therefore if bo < 1, system  stability  for Kmax < K < 0 is obtained. 

For n = 2 the  control  algorithm is 

'For noise with R N N  = e-hT,  AT = 2048. 
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with F = 25; for n = 4, F m i n  = 11.5 for  (bo),,, = 0.5938 
and 

bo'p T = [ - 2  -0.5 1 2 . 5 1  . (62) 

Figure 4 shows how the  elements of bop, vary  for n = 10 
as a function of bo, and Figure 5 shows  the  variation of F 
with  respect  to bo. 

If only 3 distinct  coefficients, b ? ,  bl, bo, are  used 
with n = 10, the  control  algorithm is 

10 

- uk+l = (4.4/5) B i  (k) - (3.4/5) Bi(k)+0.735u,,(63) 
i =  6 i - 1  

1 2 3 4 5 6 7 8 9 1 0  
I 

Figure4-The  elements of b,, for  n = 10. 

Figure 3-FST root  locus  for bo = 0.8333. 

F 

Figure 5°F versus bo for n = 10. 

with F = [(4.4)' + (3.4)']/5 = 6.18. Thus,  for n = 10, use of sample  averaging  to  reduce  the  num- 
ber of required  distinct  controller  parameters  increases  the  noise  factor F by 6.18/4.71 or  31%. 
For  large n,  nb2/2 = 4.5,  nb1/2 = - 3.5, and F = 85/n. 

Consider now the use of pulse-width-modulation  during  the T second  interval so that  re- 
action  jet  attitude  control  torquers  can  be  used.  The jet on-time AT, is scaled  to  apply  the 
same  control  impulse as the preceding  amplitude-modulation  design;  that is, 

Urnax = u,T, AT, 5 T (64) 

13 



The  matrix A, now non-linear,  becomes 

Applying the  linear FST design  methods,  assuming Y, is constant,  yields  finite  settling  time 
response as Y,-constant  with c,, = 2, c 1  = 1, and c z  = 2 + 0.5 r,. Using  Equation  19 m d  3 dis- 
tinct  controller  coefficients  yields 

bo = 2 - bT a ( y k  ) . 

The  elements of a are  piecewise continuous  functions of yk; for  example, 

9 - 6y, 

Also  for yk = 0, bo = 0; and for 7, = 1, b and bo are  the  same as used with  amplitude  modulation. 

The matrix A can  be  used  to  examine  the  non-linear  response of this FST design.  Defining Gk 
as the  calculated  control  level  and  retaining uk as the  control  level  applied  and  remembered  allows 
minimum  jet  on-time and jet full-on  conditions  to be handled by the  logic 

For large initial rates the  response for KTz = 1, U m a x  = 1, Urnin = 0.05 is given in  Tables 2 and 3. 

14 



Table 2 

Saturated Transient Response. 

Table 3 

Unsaturated Transient Response. 

SIMULATION RESULTS 

Construction of a FST system to control a second-order plant  was  accomplished  using  hybrid 
simulation.  The  continuous  plant, C( s ) = K / s  , was modeled on the  analog  computer, and digital 
computation generated the control law of Equation 1 and the output e r r o r  0 = 8, - 8, , where 8, is 
the  plant  output and 8, is a staircase  reference function  that  changes every T seconds. 

The  control law update  interval, T, is 11 seconds, of which 10 seconds is used  for output sam- 
pling  and 1 second  for  the  computational and conversion  delays;  that is, Equation 1 has  the  form 

with b, = 0 and n = ( T  -T, )IT = lO/AT. Output error  sampling  periods, AT, of 10/512,  10/128, and 
10/32 seconds are provided; an option  allowing  the  plant  output  to  be  integrated  for 10/4 seconds 
on the  analog  computer  and  sampled  every 10/4 seconds is included. 

15 



Since  the  data  sampling  interval is now only (T - T, ) , Equation 49 becomes 

r 1  1 1 1 
- 

1 ( T  - T d  3(T - Td 5 ( T -  T d )  7 ( T - T d )  
8 8 8 8 

( T - T , ) Y T 2  7 ( T - T , ) y T 2  19(T-T, )2 /T2 3 7 ( T - T , ) y T 2  
96 96 96 96 - 

and  letting d = Td/( T - T, ) , Equation  71  reduces  to 

- 
c1 

(1  i- d)c2 T 

b / 9 6  7/69  19/96  37/96 - 

As shown in Reference  3,  the relative stability as described by the  root locus plot (Figure 3) 
depends only on the  plant  gain, K ,  and  the  value of b o .  If bo is kept at the value of (bo),,, for d = 0, 
the addition  of  the  delay  affects  only  the  value of F. The  inverse of Equation 72 yields 

(2) b = 

for bo = 0.8333. For d = 1/10, 

- ] i - d  

-2.150 

-0 .550  

1.050 

2.550 - 

-9.667 

-7.667 
+ (%z 

with F = (20.13) (4/n)  which corresponds  to an increase  in F of 54%. 

As developed previously  (Equations 34 and 38)  the  FST loop gain  requires a plant  constant, K ~ ,  

such  that 
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If K # KO, a non-finite  but  rapidly  convergent  sequence  will  characterize  the  transient  response. 
Figure 6 presents this effect  for an  initial condition  response, 8, # 0, 8, = 0; Figures 7, 8, 9 show 
this effect when the  controller is tracking an input  "staircase"  sinusoid. 

The  coefficient  set of Equation 74 is exact 
for  n - and is a good approximate set for   large 
n. Figure  10  shows the effect of the  approxima- 
tion  for n = 32, n = 128,  and n = 512; Fig- 
ure  11 compares  the  sampling  format  for finite 
and  infinite n.  

The  steady-state  performance when output 
noise is present  shows,  in Figure 12,  the re-  
duction of the controller  noise  sensitivity as the 
error  sampling  rate is increased.  The  runs  in 
Figure 10 correspond to the  values of n = 32, 
128,512,and : given in  Table 1 of the  preceding 
section.  Figure 13 presents a transient  re- 
sponse with noise  present for n = 512. 

n* n -  . ' !  

..._I. ( 10 ) 

RECORDER SATURATION * % = e  - 0 
R o  

Figure  7-Tracking response for K = 0.8 KO. 

( 100) u . .  

( a )  K = 0 . 8 K o  ( b )  K = K o  ( c )  K = I . I K o  

Figure  6-Initial  rate  transient response. 

TIME- 

& 25 

? 25 

? 25 

* ";RECORDER SATURATION 
'%*TO SHOW QUANTIZING NOISE 

Figure  8"Tracking response for K = KO. 
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111lll1ll I 

TIME - 
t 25 

5 25 

t 
? RECORDER SATURATION 

Figure  9-Tracking response for K = 1.1 K O .  

CONCLUSIONS 

This  paper has extended  the  work  done  in 
Reference 3 so that the  dual-rate FST control 
law can be applied  to t l th  order  single-input, 
single-output  systems. A means of handling 
computation and conversion  delays,  additional 
noise  analysis,  and  additional  hybrid  simulation 
work is also documented. 

The  general  control law formulation  given 
in Equation 1 allows  for  the  controller  coeffi- 
cients b ,  (k), b i  (k) to be a function of the con- 
trol  interval  index, k .  In one of the  design  ex- 
amples  presented  in  this  report,  the  coefficients 
required  are constant.  The  need  for  varying 
coefficients  arises when the  matrix A (Equa- 
tion 23) has elements  that change from  control 
interval  to  control  interval.  This  requires that 

TIME - TIME - 

( 100) u qJ" Jd+ -\- 
( a )  n = 3 2  ( b )  n.128 ( c )  n = 5 1 2  

Figure 10-The effect  of  the  large  n assumption. 

TIME- 

* INPUT TO A / D  CONVERTER 

1's: INPUT TO  A /D  CONVERTER 
FOR FINITE n 

FOR INFINITE n 

Figure 11-Error sampling  format. 
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( 2 0 ) i  

" ~ _  . . 5 . . . . . .  
"" ~ 

. .   . .  * A .:,+ 
.~ ! *  - . . . .  : . I . :  

' ' N t S '  

**' N t S  

**ON + = (  noise - 0 )  
"~ .... ~~ r-"~. - . .  

. .  . .  

* RECORDER CHANNEL 

+ = (  noise -0 ) 
G A I N  =ZERO 

Figure  13"Transient  performance  with noise. 
* *(j 

the  control  vector cT, c0 also be a function of k 

Figure  12-Steady  state  performance w i th  noise. i f  A is to  approach an FST matrix as its  ele- 
ments  approach a constant  value. This approach 

has been  used to apply  the  FST  control law to  pulse-width-modulation  control of a second-order 
plant.  The  elements of A can also change  due to changes  in  the  equilibrium  position of a non-linear 
plant.  Thus,  using  the  non-linear  model,  the  coefficients bo (k) , b ,  (k) can  be  adjusted  to  "track 
the  operating point" and maintain FST response about the  operating point. 

In summary  the  key  features of the new FST control  law a re :  

(1) The  dual error  sampling/control  level  update  rates allow  the error  sampling  rate to  be 
chosen  to  meet  noise  sensitivity  requirements and the  control update rate chosen  to  avoid 
plant  saturation. 

(2) The memory of the  previous  control  level  greatly  reduces  the  need for the controller coef- 
ficients to produce  derived  error  rate  information. 

(3) Only the output state need  be  directly  sensed; all the  state  variables  appear  combined  in 
the  generated  control  level,  but their isolation is not  required. 
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(4) The  control  technique  possesses  null  stability  and  reasonable  tolerance  to  errors  in  the 
plant  model. 

(5) The finite memory of the  control law allows  the  controller  weighting  coefficients  to  be 
readily changed during  each  control  interval. 

(6) A multiplicity of error   samples  taken  while  the  control  level  remains  constant  provides a 
source of data  for  plant  and  disturbance  on-line  modeling. 

Goddard  Space  Flight  Center 
National  Aeronautics  and  Space  Administration 
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